1. Ferrante di Ruffano, L., Takwoingi, Y., Dinnes, J., Chuchu, N., Bayliss, S.E., Davenport, C. et al. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 12, CD013186 (2019).
2. Ipsos-MORI. Technology tracker Q3. https://www.ipsos.com/sites/default/files/ct/publication/documents/2018-10/techtracker_q3_2018_final2.pdf (2018).
3. Flaten, H. K., St Claire, C., Schlager, E., Dunnick, C. A. & Dellavalle R. P. Growth of mobile applications in dermatology—2017 update. Dermatol Online J. 24, 13030/qt3hs7n9z6 (2018)
4. Freeman, K., Dinnes, J., Chuchu, N., Takwoingi, Y., Bayliss, S.E., Matin, R.N. et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 368, m127 (2020).
5. Udrea, A., Mitra, G.D., Costea, D., Noels, E.C., Wakkee, M., Siegel, D.M. et al. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. J. Eur. Acad. Dermatol. Venereol. 34, 648–655 (2020).