Abstract
Abstract
Background
Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging.
Methods
We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome.
Results
This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
Conclusions
This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).
2. Stuelten, C. H., Parent, C. A. & Montell, D. J. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat. Rev. Cancer 18, 296–312 (2018).
3. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).
4. Lopez-Garcia, C., Sansregret, L., Domingo, E., McGranahan, N., Hobor, S., Birkbak, N. J. et al. BCL9L dysfunction impairs caspase-2 expression permitting aneuploidy tolerance in colorectal cancer. Cancer Cell. 31, 79–93 (2017).
5. Puram, S. V., Tirosh, I., Parikh, A. S., Patel, A. P., Yizhak, K., Gillespie, S. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck. Cancer Cell 171, 1611–24 e24 (2017).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献