Norepinephrine inhibits CD8+ T-cell infiltration and function, inducing anti-PD-1 mAb resistance in lung adenocarcinoma

Author:

Geng Qishun,Li Lifeng,Shen Zhibo,Zheng Yuanyuan,Wang Longhao,Xue Ruyue,Xue Wenhua,Peng Mengle,Zhao JieORCID

Abstract

Abstract Background Mental stress-induced neurotransmitters can affect the immune system in various ways. Therefore, a better understanding of the role of neurotransmitters in the tumour immune microenvironment is expected to promote the development of novel anti-tumour therapies. Methods In this study, we analysed the plasma levels of neurotransmitters in anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb)-resistance patients and sensitive patients, to identify significantly different neurotransmitters. Subsequently, animal experiments and experiments in vitro were used to reveal the specific mechanism of norepinephrine’s (NE) effect on immunotherapy. Results The plasma NE levels were higher in anti-PD-1 mAb-resistance patients, which may be the main cause of anti-PD-1 mAb resistance. Then, from the perspective of the immunosuppressive microenvironment to explore the specific mechanism of NE-induced anti-PD-1 mAb resistance, we found that NE can affect the secretion of C-X-C Motif Chemokine Ligand 9 (CXCL9) and adenosine (ADO) in tumour cells, thereby inhibiting chemotaxis and function of CD8+ T cells. Notably, the WNT7A/β-catenin signalling pathway plays a crucial role in this progression. Conclusion NE can affect the secretion of CXCL9 and ADO in tumour cells, thereby inhibiting chemotaxis and the function of CD8+ T cells and inducing anti-PD-1 mAb resistance in lung adenocarcinoma (LUAD).

Funder

the Collaborative Innovation Major Project of Zhengzhou

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3