Abstract
Abstract
Background
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear.
Methods
We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated.
Results
IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients.
Conclusions
IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.
Funder
National Research Foundation of Korea
Ministry of Science, ICT and Future Planning
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.
2. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:2140–1.
3. Kabacaoglu D, Ciecielski KJ, Ruess DA, Algül H. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: current limitations and future options. Front immunol. 2018;9:1878.
4. Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers. 2018;10:6.
5. Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, et al. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med. 2020;6:6–17.