Abstract
Abstract
Background
Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies.
Methods
A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models.
Results
We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo.
Conclusion
Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.
Funder
National Health Research Institutes
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Simon K. Colorectal cancer development and advances in screening. Clin Inter Aging. 2016;11:967–76.
2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.
3. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.
4. Raymond E, Faivre S, Woynarowski JM, Chaney SG. Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol. 1998;25:4–12.
5. Di Francesco AM, Ruggiero A, Riccardi R. Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci. 2002;59:1914–27.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献