Differential association of CD68+ and CD163+ macrophages with macrophage enzymes, whole tumour gene expression and overall survival in advanced melanoma

Author:

Tremble Liam FrielORCID,McCabe MarkORCID,Walker Sidney P.,McCarthy SiobhánORCID,Tynan Réiltín F.ORCID,Beecher SuzanneORCID,Werner Réiltín,Clover A. James P.ORCID,Power X. Derek G.ORCID,Forde Patrick F.ORCID,Heffron Cynthia C. B. B.ORCID

Abstract

Abstract Background The density and phenotype of tumour-associated macrophages have been linked with prognosis in a range of solid tumours. While there is strong preclinical evidence that tumour-associated macrophages promote aspects of tumour progression, it can be challenging to infer clinical activity from surface markers and ex vivo behaviour. We investigated the association of macrophage infiltration with prognosis and functional changes in the tumour microenvironment in primary human melanoma. Methods Fifty-seven formalin-fixed, paraffin-embedded primary melanomas were analysed by immunohistochemical analysis of CD68, CD163, inducible nitric oxide synthase (iNOS) and arginase expression. RNA sequencing was performed on serial sections of 20 of the stained tumours to determine the influence of macrophage infiltration on gene expression. Results CD68+ cells are a functionally active subset of macrophages that are associated with increased iNOS and arginase staining and altered gene expression. In comparison, while there is a greater accumulation of CD163+ macrophages in larger tumours, these cells are comparatively inactive, with no association with the level of iNOS or arginase staining, and no effect on gene expression within the tumour. The infiltration of either subset of macrophages did not correlate to overall survival. Conclusions Thus, melanomas contain distinct macrophage populations with diverse phenotypes, but with no observable prognostic role.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3