Dynamic functional thalamocortical dysconnectivity in schizophrenia correlates to antipsychotics response

Author:

Yang Mi,Liu Liju,Cui Hongmei,Deng Chijun,Xiong Weisen,Zhao Guocheng,Du Shulin,Kosten Thomas R.ORCID,Chen Huafu,Li ZezhiORCID,Zhang XiangyangORCID

Abstract

AbstractAlthough many studies have showed abnormal thalamocortical networks in patients with schizophrenia (SCZ), the dynamic functional thalamocortical connectivity of individuals with SCZ and the effect of antipsychotics on this connectivity have not been investigated. Drug-naïve first-episode individuals with SCZ and healthy controls were recruited. Patients were treated with risperidone for 12 weeks. Resting-state functional magnetic resonance imaging was acquired at baseline and week 12. We identified six functional thalamic subdivisions. The sliding window strategy was used to determine the dynamic functional connectivity (dFC) of each functional thalamic subdivision. Individuals with SCZ displayed decreased or increased dFC variance in different thalamic subdivisions. The baseline dFC between ventral posterior-lateral (VPL) portions and right dorsolateral superior frontal gyrus (rdSFG) correlated with psychotic symptoms. The dFC variance between VPL and right medial orbital superior frontal gyrus (rmoSFG) or rdSFG decreased after 12-week risperidone treatment. The decreased dFC variance between VPL and rmoSFG correlated with the reduction of PANSS scores. Interestingly, the dFC between VPL and rmoSFG or rdSFG decreased in responders. The dFC variance change of VPL and the averaged whole brain signal correlated with the risperidone efficacy. Our study demonstrates abnormal variability in thalamocortical dFC may be implicated in psychopathological symptoms and risperidone response in individuals with schizophrenia, suggesting that thalamocortical dFC variance may be correlated to the efficacy of antipsychotic treatment.Registration: ClinicalTrials.gov Identifier: NCT00435370. https://www.clinicaltrials.gov/ct2/show/NCT00435370?term=NCT00435370&draw=2&rank=1

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3