Network hub centrality and working memory performance in schizophrenia

Author:

Eryilmaz Hamdi,Pax Melissa,O’Neill Alexandra G.,Vangel Mark,Diez Ibai,Holt Daphne J.,Camprodon Joan A.,Sepulcre Jorge,Roffman Joshua L.

Abstract

AbstractCognitive impairment, and working memory deficits in particular, are debilitating, treatment-resistant aspects of schizophrenia. Dysfunction of brain network hubs, putatively related to altered neurodevelopment, is thought to underlie the cognitive symptoms associated with this illness. Here, we used weighted degree, a robust graph theory metric representing the number of weighted connections to a node, to quantify centrality in cortical hubs in 29 patients with schizophrenia and 29 age- and gender-matched healthy controls and identify the critical nodes that underlie working memory performance. In both patients and controls, elevated weighted degree in the default mode network (DMN) was generally associated with poorer performance (accuracy and reaction time). Higher degree in the ventral attention network (VAN) nodes in the right superior temporal cortex was associated with better performance (accuracy) in patients. Degree in several prefrontal and parietal areas was associated with cognitive performance only in patients. In regions that are critical for sustained attention, these correlations were primarily driven by between-network connectivity in patients. Moreover, a cross-validated prediction analysis showed that a linear model using a summary degree score can be used to predict an individual’s working memory accuracy (r = 0.35). Our results suggest that schizophrenia is associated with dysfunctional hubs in the cortical systems supporting internal and external cognition and highlight the importance of topological network analysis in the search of biomarkers for cognitive deficits in schizophrenia.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3