Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives

Author:

Kalmady Sunil VasuORCID,Paul Animesh Kumar,Greiner Russell,Agrawal Rimjhim,Amaresha Anekal C.,Shivakumar Venkataram,Narayanaswamy Janardhanan C.,Greenshaw Andrew J.ORCID,Dursun Serdar M.,Venkatasubramanian Ganesan

Abstract

Abstract Recently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-state functional magnetic resonance imaging. In this study, we apply this learned model to first-degree relatives of schizophrenia patients, who were found to not have active psychosis or schizophrenia. We observe that the participants that this model classified as schizophrenia patients had significantly higher “schizotypal personality scores” than those who were not. Further, the “EMPaSchiz probability score” for schizophrenia status was significantly correlated with schizotypal personality score. This demonstrates the potential of machine-learned diagnostic models to predict state-independent vulnerability, even when symptoms do not meet the full criteria for clinical diagnosis.

Funder

Alberta Machine Intelligence Institute

IBM Alberta Centre for Advanced Studies

Alberta Innovates Graduate Student Scholarship

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

DBT India Alliance

Department of Science and Technology, Ministry of Science and Technology

La Foundation Grant

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Reference21 articles.

1. McGue, M., Gottesman, I. I. & Rao, D. C. The transmission of schizophrenia under a multifactorial threshold model. Am. J. Hum. Genet. 35, 1161–1178 (1983).

2. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

3. McClellan, J. M., Susser, E. & King, M.-C. Schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychiatry 190, 194–199 (2007).

4. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

5. Greenwood, T. A., Shutes-David, A. & Tsuang, D. W. Endophenotypes in schizophrenia: digging deeper to identify genetic mechanisms. J. Psychiatr. Brain Sci. 4, e190005 (2019).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3