Abstract
Abstract
Recently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-state functional magnetic resonance imaging. In this study, we apply this learned model to first-degree relatives of schizophrenia patients, who were found to not have active psychosis or schizophrenia. We observe that the participants that this model classified as schizophrenia patients had significantly higher “schizotypal personality scores” than those who were not. Further, the “EMPaSchiz probability score” for schizophrenia status was significantly correlated with schizotypal personality score. This demonstrates the potential of machine-learned diagnostic models to predict state-independent vulnerability, even when symptoms do not meet the full criteria for clinical diagnosis.
Funder
Alberta Machine Intelligence Institute
IBM Alberta Centre for Advanced Studies
Alberta Innovates Graduate Student Scholarship
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
DBT India Alliance
Department of Science and Technology, Ministry of Science and Technology
La Foundation Grant
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference21 articles.
1. McGue, M., Gottesman, I. I. & Rao, D. C. The transmission of schizophrenia under a multifactorial threshold model. Am. J. Hum. Genet. 35, 1161–1178 (1983).
2. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).
3. McClellan, J. M., Susser, E. & King, M.-C. Schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychiatry 190, 194–199 (2007).
4. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).
5. Greenwood, T. A., Shutes-David, A. & Tsuang, D. W. Endophenotypes in schizophrenia: digging deeper to identify genetic mechanisms. J. Psychiatr. Brain Sci. 4, e190005 (2019).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献