Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook

Author:

Birnbaum M. L.ORCID,Ernala S. K.,Rizvi A. F.,Arenare E.,R. Van Meter A.ORCID,De Choudhury M.,Kane J. M.

Abstract

AbstractAlthough most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (p < 0.0001, Wilcoxon signed rank test), anger (p < 0.001), and death (p < 0.0001) categories, decreased usage of words belonging to work (p = 0.00579), friends (p < 0.0001), and health (p < 0.0001) categories, as well as a significantly increased use of first (p < 0.0001) and second-person (p  < 0.001) pronouns. We additionally observed a significant increase in co-tagging (p < 0.001) and friending (p < 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3