E2F1-mediated KDM4A-AS1 up-regulation promotes EMT of hepatocellular carcinoma cells by recruiting ILF3 to stabilize AURKA mRNA

Author:

Shen Hao-Ming,Zhang Di,Xiao Ping,Qu Bin,Sun Yi-FanORCID

Abstract

AbstractHepatocellular carcinoma (HCC) is a gastrointestinal tumor with high clinical incidence. Long non-coding RNAs (lncRNAs) play vital roles in modulating the growth and epithelial-mesenchymal transition (EMT) of HCC. However, the underlying mechanism of lncRNA KDM4A antisense RNA 1 (KDM4A-AS1) in HCC remains elusive. In our study, the role of KDM4A-AS1 in HCC was systematically investigated. The levels of KDM4A-AS1, interleukin enhancer-binding factor 3 (ILF3), Aurora kinase A (AURKA), and E2F transcription factor 1 (E2F1) were determined by RT-qPCR or western blot. ChIP and dual luciferase reporter experiments were performed to detect the binding relationship between E2F1 and KDM4A-AS1 promoter sequence. RIP and RNA-pull down confirmed the interaction of ILF3 with KDM4A-AS1/AURKA. Cellular functions were analyzed by MTT, flow cytometry, wound healing and transwell assays. IHC was performed to detect Ki67 in vivo. We found that KDM4A-AS1 was increased in HCC tissues and cells. Elevated KDM4A-AS1 level was correlated to poor prognosis of HCC. Knockdown of KDM4A-AS1 inhibited the proliferation, migration, invasion and EMT of HCC cells. ILF3 bound to KDM4A-AS1 and AURKA. KDM4A-AS1 maintained the stability of AURKA mRNA by recruiting ILF3. E2F1 transcriptionally activated KDM4A-AS1. Overexpressed KDM4A-AS1 reversed the contribution of E2F1 depletion to AURKA expression and EMT in HCC cells. KDM4A-AS1 promoted tumor formation in vivo through the PI3K/AKT pathway. These results revealed that E2F1 transcriptionally activated KDM4A-AS1 to regulate HCC progression via the PI3K/AKT pathway. E2F1 and KDM4A-AS1 may serve as good prognostic targets for HCC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3