Rapid in situ quantification of the strobilurin resistance mutation G143A in the wheat pathogen Blumeria graminis f. sp. tritici

Author:

Dodhia Kejal N.,Cox Belinda A.,Oliver Richard P.,Lopez-Ruiz Francisco J.

Abstract

AbstractAs the incidence of fungicide resistance in plant pathogens continues to increase, control of diseases and the management of resistance would be greatly aided by rapid diagnostic methods. Quantitative allele-specific PCR (ASqPCR) is an ideal technique for the in-field analysis of fungicide resistance as it can quantify the frequency of mutations in fungicide targets. We have applied this technique to the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew. In Australia, strobilurin-resistant Bgt was first discovered in 2016. Molecular analysis revealed a nucleotide transversion in the cytochrome b (cytb) gene in the cytochrome bc1 enzyme complex, resulting in a substitution of alanine for glycine at position 143 (G143A). We have developed an in-field ASqPCR assay that can quantify both the resistant (A143) and sensitive (G143) cytb alleles down to 1.67% in host and Bgt DNA mixtures, within 90 min of sample collection. The in situ analysis of samples collected during a survey in Tasmania revealed A143 frequencies ranging between 9–100%. Validation of the analysis with a newly developed laboratory based digital PCR assay found no significant differences between the two methods. We have successfully developed an in-field quantification method, for a strobilurin-resistant allele, by pairing the ASqPCR assay on a lightweight qPCR instrument with a quick DNA extraction method. The deployment of these type of methodologies in the field can contribute to the effective in-season management of fungicide resistance.

Funder

Grains Research and Development Corporation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference56 articles.

1. Brent, K. J. Fungicide resistance in crop pathogens: How can it be managed? FRAC Monogr. (1995).

2. Russell, P. E. Fungicide resistance: Occurrence and management. J. Agric. Sci. 124, 317–323 (1995).

3. Hobbelen, P. H. F., Paveley, N. D. & van den Bosch, F. The emergence of resistance to fungicides. PLoS ONE 9, e91910 (2014).

4. Lucas, J. A., Hawkins, N. J. & Fraaije, B. A. The evolution of fungicide resistance, chapter 2. In Advances in Applied Microbiology Vol. 90 (eds Sariaslani, S. & Gadd, G. M.) 29–92 (Academic Press, New York, 2015).

5. Brent, K. J. & Hollomon, D. W. Fungicide Resistance: The Assessment of Risk (Global Crop Protection Federation Brussels, Belgium, 1998).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3