Recycling Waste Circuit Board Efficiently and Environmentally Friendly through Small-Molecule Assisted Dissolution

Author:

Chen Zhiqiang,Yang Meng,Shi Qian,Kuang Xiao,Qi H. Jerry,Wang Tiejun

Abstract

AbstractWith the increasing amount of electronic waste (e-waste) generated globally, it is an enormous challenge to recycle printed circuit boards (PCBs) efficiently and environmentally friendly. However, conventional recycling technologies have low efficiency and require tough treatment such as high temperature (>200 °C) and high pressure. In this paper, a small-molecule assisted approach based on dynamic reaction was proposed to dissolve thermosetting polymers containing ester groups and recycle electronic components from PCBs. This effective approach operates below 200 °C and the polymer could be dissolved in a short time. It has a remarkable ability to recycle a wide range of commercial PCBs, including boards made of typical anhydride epoxy or polyester substrate. Besides, it is environmentally friendly as even the recycling solution could be reused multiple times. In addition, the wasted solution after recycling could be used for board bonding and damage repair. This work also demonstrates the advantage of using polymers containing ester groups as the PCB substrate in consideration of eco-friendly and efficient recycling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3