Genome-wide characterization of circulating metabolic biomarkers
Author:
Karjalainen Minna K.ORCID, Karthikeyan Savita, Oliver-Williams Clare, Sliz EevaORCID, Allara EliasORCID, Fung Wing Tung, Surendran Praveen, Zhang WeihuaORCID, Jousilahti PekkaORCID, Kristiansson KatiORCID, Salomaa VeikkoORCID, Goodwin Matt, Hughes David A.ORCID, Boehnke MichaelORCID, Fernandes Silva LilianORCID, Yin XianyongORCID, Mahajan Anubha, Neville Matt J.ORCID, van Zuydam Natalie R., de Mutsert Renée, Li-Gao Ruifang, Mook-Kanamori Dennis O., Demirkan AyseORCID, Liu JunORCID, Noordam RaymondORCID, Trompet StellaORCID, Chen ZhengmingORCID, Kartsonaki Christiana, Li LimingORCID, Lin Kuang, Hagenbeek Fiona A.ORCID, Hottenga Jouke JanORCID, Pool RenéORCID, Ikram M. ArfanORCID, van Meurs Joyce, Haller Toomas, Milaneschi YuriORCID, Kähönen Mika, Mishra Pashupati P., Joshi Peter K.ORCID, Macdonald-Dunlop Erin, Mangino MassimoORCID, Zierer Jonas, Acar Ilhan E.ORCID, Hoyng Carel B., Lechanteur Yara T. E., Franke Lude, Kurilshikov AlexanderORCID, Zhernakova Alexandra, Beekman MarianORCID, van den Akker Erik B.ORCID, Kolcic Ivana, Polasek OzrenORCID, Rudan Igor, Gieger ChristianORCID, Waldenberger MelanieORCID, Asselbergs Folkert W., , , , Hayward CarolineORCID, Fu JingyuanORCID, den Hollander Anneke I.ORCID, Menni CristinaORCID, Spector Tim D.ORCID, Wilson James F.ORCID, Lehtimäki TerhoORCID, Raitakari Olli T., Penninx Brenda W. J. H., Esko Tonu, Walters Robin G.ORCID, Jukema J. WouterORCID, Sattar NaveedORCID, Ghanbari MohsenORCID, Willems van Dijk KoORCID, Karpe FredrikORCID, McCarthy Mark I.ORCID, Laakso MarkkuORCID, Järvelin Marjo-RiittaORCID, Timpson Nicholas J.ORCID, Perola Markus, Kooner Jaspal S.ORCID, Chambers John C., van Duijn CorneliaORCID, Slagboom P. ElineORCID, Boomsma Dorret I.ORCID, Danesh John, Ala-Korpela MikaORCID, Butterworth Adam S.ORCID, Kettunen JohannesORCID
Abstract
AbstractGenome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1–7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8–11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.
Publisher
Springer Science and Business Media LLC
Reference99 articles.
1. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011). 2. Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012). 3. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014). 4. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016). 5. Gallois, A. et al. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat. Commun. 10, 4787–4788 (2019).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|