Abstract
AbstractComing up with sustainable sources of electricity is one of the grand challenges of this century. The research field of materials for energy harvesting stems from this motivation, including thermoelectrics1, photovoltaics2 and thermophotovoltaics3. Pyroelectric materials, converting temperature periodic variations in electricity, have been considered as sensors4 and energy harvesters5–7, although we lack materials and devices able to harvest in the joule range. Here we develop a macroscopic thermal energy harvester made of 42 g of lead scandium tantalate in the form of multilayer capacitors that produces 11.2 J of electricity per thermodynamic cycle. Each pyroelectric module can generate up to 4.43 J cm−3 of electric energy density per cycle. We also show that two of these modules weighing 0.3 g are sufficient to sustainably supply an autonomous energy harvester embedding microcontrollers and temperature sensors. Finally, we show that for a 10 K temperature span these multilayer capacitors can reach 40% of Carnot efficiency. These performances stem from (1) a ferroelectric phase transition enabling large efficiency, (2) low leakage current preventing losses and (3) high breakdown voltage. These macroscopic, scalable and highly efficient pyroelectric energy harvesters enable the reconsideration of the production of electricity from heat.
Publisher
Springer Science and Business Media LLC
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献