Quantum theory based on real numbers can be experimentally falsified

Author:

Renou Marc-OlivierORCID,Trillo DavidORCID,Weilenmann MirjamORCID,Le Thinh P.,Tavakoli Armin,Gisin NicolasORCID,Acín Antonio,Navascués Miguel

Abstract

AbstractAlthough complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces1,2. This has puzzled countless physicists, including the fathers of the theory, for whom a real version of quantum theory, in terms of real operators, seemed much more natural3. In fact, previous studies have shown that such a ‘real quantum theory’ can reproduce the outcomes of any multipartite experiment, as long as the parts share arbitrary real quantum states4. Here we investigate whether complex numbers are actually needed in the quantum formalism. We show this to be case by proving that real and complex Hilbert-space formulations of quantum theory make different predictions in network scenarios comprising independent states and measurements. This allows us to devise a Bell-like experiment, the successful realization of which would disprove real quantum theory, in the same way as standard Bell experiments disproved local physics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference50 articles.

1. Dirac, P. The Principles of Quantum Mechanics (International Series of Monographs on Physics, Clarendon Press, 1958).

2. von Neumann, J. & Beyer, R. Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955).

3. Einstein, A., Przibram, K. & Klein, M. Letters on Wave Mechanics: Correspondence with H. A. Lorentz, Max Planck, and Erwin Schrödinger (Philosophical Library/Open Road, 2011).

4. McKague, M., Mosca, M. & Gisin, N. Simulating quantum systems using real Hilbert spaces. Phys. Rev. Lett. 102, 020505 (2009).

5. Ismael, J. in The Stanford Encyclopedia of Philosophy Fall 2021 Edition (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021); https://plato.stanford.edu/archives/fall2021/entries/qm/

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3