Evidence for intrinsic charm quarks in the proton

Author:

,Ball Richard D.,Candido AlessandroORCID,Cruz-Martinez JuanORCID,Forte Stefano,Giani Tommaso,Hekhorn FelixORCID,Kudashkin KirillORCID,Magni Giacomo,Rojo JuanORCID

Abstract

AbstractThe theory of the strong force, quantum chromodynamics, describes the proton in terms of quarks and gluons. The proton is a state of two up quarks and one down quark bound by gluons, but quantum theory predicts that in addition there is an infinite number of quark–antiquark pairs. Both light and heavy quarks, whose mass is respectively smaller or bigger than the mass of the proton, are revealed inside the proton in high-energy collisions. However, it is unclear whether heavy quarks also exist as a part of the proton wavefunction, which is determined by non-perturbative dynamics and accordingly unknown: so-called intrinsic heavy quarks1. It has been argued for a long time that the proton could have a sizable intrinsic component of the lightest heavy quark, the charm quark. Innumerable efforts to establish intrinsic charm in the proton2 have remained inconclusive. Here we provide evidence for intrinsic charm by exploiting a high-precision determination of the quark–gluon content of the nucleon3 based on machine learning and a large experimental dataset. We disentangle the intrinsic charm component from charm–anticharm pairs arising from high-energy radiation4. We establish the existence of intrinsic charm at the 3-standard-deviation level, with a momentum distribution in remarkable agreement with model predictions1,5.We confirm these findings by comparing them to very recent data on Z-boson production with charm jets from the Large Hadron Collider beauty (LHCb) experiment6.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab;The European Physical Journal A;2024-09-04

2. B-meson production at forward rapidities in pp collisions at the LHC: estimating the intrinsic bottom contribution;The European Physical Journal C;2024-09-02

3. J/ψ photoproduction: Threshold to very high energy;Physics Letters B;2024-09

4. Contact interaction study of proton parton distributions;The European Physical Journal C;2024-07-26

5. Proton properties from nested surface vortices;Vortex Dynamics - Theoretical, Experimental and Numerical Approaches [Working Title];2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3