Entanglement-enhanced matter-wave interferometry in a high-finesse cavity

Author:

Greve Graham P.ORCID,Luo ChengyiORCID,Wu Baochen,Thompson James K.ORCID

Abstract

AbstractAn ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit1–3 set by projections of individual atoms. Large amounts of entanglement4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity $$3\,.\,{4}_{-0.9}^{+1.1}$$ 3 . 4 0.9 + 1.1  dB and $$2\,.\,{5}_{-0.6}^{+0.6}$$ 2 . 5 0.6 + 0.6  dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity $$1\,.\,{7}_{-0.5}^{+0.5}$$ 1 . 7 0.5 + 0.5  dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors17,18, searches for new physics, particles and fields19–23, future advanced gravitational wave detectors24,25 and accessing beyond mean-field quantum many-body physics26–30.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3