Measurement-induced entanglement and teleportation on a noisy quantum processor

Author:

,Hoke J. C.ORCID,Ippoliti M.,Rosenberg E.ORCID,Abanin D.,Acharya R.,Andersen T. I.,Ansmann M.,Arute F.,Arya K.,Asfaw A.,Atalaya J.,Bardin J. C.ORCID,Bengtsson A.ORCID,Bortoli G.,Bourassa A.,Bovaird J.,Brill L.,Broughton M.,Buckley B. B.ORCID,Buell D. A.,Burger T.,Burkett B.ORCID,Bushnell N.,Chen Z.,Chiaro B.,Chik D.,Cogan J.,Collins R.,Conner P.,Courtney W.,Crook A. L.,Curtin B.ORCID,Dau A. G.,Debroy D. M.,Del Toro Barba A.ORCID,Demura S.ORCID,Di Paolo A.ORCID,Drozdov I. K.ORCID,Dunsworth A.,Eppens D.ORCID,Erickson C.,Farhi E.,Fatemi R.,Ferreira V. S.,Burgos L. F.,Forati E.,Fowler A. G.,Foxen B.,Giang W.,Gidney C.,Gilboa D.,Giustina M.,Gosula R.ORCID,Gross J. A.ORCID,Habegger S.ORCID,Hamilton M. C.,Hansen M.,Harrigan M. P.ORCID,Harrington S. D.ORCID,Heu P.,Hoffmann M. R.ORCID,Hong S.ORCID,Huang T.,Huff A.,Huggins W. J.ORCID,Isakov S. V.,Iveland J.,Jeffrey E.,Jiang Z.ORCID,Jones C.,Juhas P.ORCID,Kafri D.,Kechedzhi K.,Khattar T.,Khezri M.,Kieferová M.,Kim S.,Kitaev A.,Klimov P. V.,Klots A. R.,Korotkov A. N.,Kostritsa F.,Kreikebaum J. M.,Landhuis D.ORCID,Laptev P.,Lau K.-M.,Laws L.,Lee J.,Lee K. W.,Lensky Y. D.,Lester B. J.,Lill A. T.,Liu W.,Locharla A.,Martin O.,McClean J. R.ORCID,McEwen M.,Miao K. C.,Mieszala A.,Montazeri S.ORCID,Morvan A.ORCID,Movassagh R.,Mruczkiewicz W.ORCID,Neeley M.ORCID,Neill C.ORCID,Nersisyan A.,Newman M.,Ng J. H.ORCID,Nguyen A.,Nguyen M.,Niu M. Y.,O’Brien T. E.ORCID,Omonije S.,Opremcak A.,Petukhov A.,Potter R.,Pryadko L. P.ORCID,Quintana C.,Rocque C.,Rubin N. C.,Saei N.,Sank D.ORCID,Sankaragomathi K.ORCID,Satzinger K. J.ORCID,Schurkus H. F.ORCID,Schuster C.,Shearn M. J.,Shorter A.,Shutty N.ORCID,Shvarts V.,Skruzny J.,Smith W. C.,Somma R.,Sterling G.,Strain D.,Szalay M.,Torres A.,Vidal G.,Villalonga B.,Heidweiller C. V.ORCID,White T.,Woo B. W. K.ORCID,Xing C.,Yao Z. J.,Yeh P.ORCID,Yoo J.,Young G.,Zalcman A.ORCID,Zhang Y.,Zhu N.ORCID,Zobrist N.,Neven H.ORCID,Babbush R.,Bacon D.,Boixo S.ORCID,Hilton J.,Lucero E.,Megrant A.ORCID,Kelly J.ORCID,Chen Y.,Smelyanskiy V.,Mi X.ORCID,Khemani V.ORCID,Roushan P.ORCID

Abstract

AbstractMeasurement has a special role in quantum theory1: by collapsing the wavefunction, it can enable phenomena such as teleportation2 and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time3–10 that go beyond the established paradigms for characterizing phases, either in or out of equilibrium11–13. For present-day noisy intermediate-scale quantum (NISQ) processors14, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15–17 to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling3,4 to measurement-induced teleportation18. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

1. Gross, D., Henneaux, M. & Sevrin, A. (eds) The Theory of the Quantum World, Proc. 25th Solvay Conference on Physics (World Scientific, 2013).

2. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

3. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

4. Li, Y., Chen, X. & Fisher, M. P. A. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

5. Gullans, M. J. & Huse, D. A. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X 10, 041020 (2020).

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3