Water in the terrestrial planet-forming zone of the PDS 70 disk
Author:
Perotti G.ORCID, Christiaens V., Henning Th.ORCID, Tabone B.ORCID, Waters L. B. F. M.ORCID, Kamp I., Olofsson G., Grant S. L.ORCID, Gasman D.ORCID, Bouwman J., Samland M., Franceschi R., van Dishoeck E. F.ORCID, Schwarz K., Güdel M., Lagage P.-O., Ray T. P.ORCID, Vandenbussche B.ORCID, Abergel A., Absil O.ORCID, Arabhavi A. M.ORCID, Argyriou I.ORCID, Barrado D.ORCID, Boccaletti A., Caratti o Garatti A., Geers V.ORCID, Glauser A. M.ORCID, Justannont K.ORCID, Lahuis F.ORCID, Mueller M.ORCID, Nehmé C., Pantin E., Scheithauer S.ORCID, Waelkens C., Guadarrama R., Jang H.ORCID, Kanwar J.ORCID, Morales-Calderón M.ORCID, Pawellek N., Rodgers-Lee D., Schreiber J., Colina L., Greve T. R., Östlin G.ORCID, Wright G.
Abstract
AbstractTerrestrial and sub-Neptune planets are expected to form in the inner (less than 10 au) regions of protoplanetary disks1. Water plays a key role in their formation2–4, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk5,6. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks7, similar to PDS 70, the first system with direct confirmation of protoplanet presence8,9. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (approximately 54 au) planet-carved gap separating an inner and outer disk10,11. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2 and/or OH, and survival through water self-shielding5. This is also supported by the presence of CO2 emission, another molecule sensitive to ultraviolet photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir12. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference64 articles.
1. Mulders, G. D., Pascucci, I., Apai, D. & Ciesla, F. J. The Exoplanet Population Observation Simulator. I. The inner edges of planetary systems. Astron. J. 156, 24 (2018). 2. Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006). 3. Eistrup, C. & Henning, T. Chemical evolution in ices on drifting, planet-forming pebbles. Astron. Astrophys. 667, A60 (2022). 4. Krijt, S. et al. Chemical habitability: supply and retention of life’s essential elements during planet formation. Preprint https://arxiv.org/abs/2203.10056 (2022). 5. Bethell, T. & Bergin, E. Formation and survival of water vapor in the terrestrial planet-forming region. Science 326, 142–153 (2009).
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|