Abstract
AbstractThe development of catalytic chemical processes that enable the revalorization of nitrous oxide (N2O) is an attractive strategy to alleviate the environmental threat posed by its emissions1–6. Traditionally, N2O has been considered an inert molecule, intractable for organic chemists as an oxidant or O-atom transfer reagent, owing to the harsh conditions required for its activation (>150 °C, 50‒200 bar)7–11. Here we report an insertion of N2O into a Ni‒C bond under mild conditions (room temperature, 1.5–2 bar N2O), thus delivering valuable phenols and releasing benign N2. This fundamentally distinct organometallic C‒O bond-forming step differs from the current strategies based on reductive elimination and enables an alternative catalytic approach for the conversion of aryl halides to phenols. The process was rendered catalytic by means of a bipyridine-based ligands for the Ni centre. The method is robust, mild and highly selective, able to accommodate base-sensitive functionalities as well as permitting phenol synthesis from densely functionalized aryl halides. Although this protocol does not provide a solution to the mitigation of N2O emissions, it represents a reactivity blueprint for the mild revalorization of abundant N2O as an O source.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amount (UNFCCC; 2008); https://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf
2. Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).
3. Crutzen, P. J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Meteorol. Soc. 96, 320–325 (1970).
4. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
5. Davidson, E. A. Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ. Res. Lett. 7, 024005 (2012).
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献