Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
Author:
Mensah Martin A.ORCID, Niskanen HenriORCID, Magalhaes Alexandre P.ORCID, Basu ShaonORCID, Kircher MartinORCID, Sczakiel Henrike L., Reiter Alisa M. V.ORCID, Elsner JonasORCID, Meinecke Peter, Biskup Saskia, Chung Brian H. Y., Dombrowsky Gregor, Eckmann-Scholz Christel, Hitz Marc PhillipORCID, Hoischen Alexander, Holterhus Paul-Martin, Hülsemann Wiebke, Kahrizi Kimia, Kalscheuer Vera M.ORCID, Kan Anita, Krumbiegel Mandy, Kurth IngoORCID, Leubner Jonas, Longardt Ann Carolin, Moritz Jörg D., Najmabadi Hossein, Skipalova Karolina, Snijders Blok Lot, Tzschach AndreasORCID, Wiedersberg Eberhard, Zenker MartinORCID, Garcia-Cabau CarlaORCID, Buschow RenéORCID, Salvatella XavierORCID, Kraushar Matthew L.ORCID, Mundlos StefanORCID, Caliebe AlmuthORCID, Spielmann MalteORCID, Horn DeniseORCID, Hnisz DenesORCID
Abstract
AbstractThousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1–3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6–8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference72 articles.
1. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020). 2. Tsang, B., Pritisanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020). 3. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005). 4. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). 5. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|