A foundation model for generalizable disease detection from retinal images

Author:

Zhou YukunORCID,Chia Mark A.,Wagner Siegfried K.,Ayhan Murat S.ORCID,Williamson Dominic J.ORCID,Struyven Robbert R.ORCID,Liu TimingORCID,Xu Moucheng,Lozano Mateo G.ORCID,Woodward-Court PeterORCID,Kihara Yuka,Allen Naomi,Gallacher John E. J.,Littlejohns Thomas,Aslam Tariq,Bishop Paul,Black Graeme,Sergouniotis Panagiotis,Atan Denize,Dick Andrew D.,Williams Cathy,Barman Sarah,Barrett Jenny H.,Mackie Sarah,Braithwaite Tasanee,Carare Roxana O.,Ennis Sarah,Gibson Jane,Lotery Andrew J.,Self Jay,Chakravarthy Usha,Hogg Ruth E.,Paterson Euan,Woodside Jayne,Peto Tunde,Mckay Gareth,Mcguinness Bernadette,Foster Paul J.,Balaskas Konstantinos,Khawaja Anthony P.,Pontikos Nikolas,Rahi Jugnoo S.,Lascaratos Gerassimos,Patel Praveen J.,Chan Michelle,Chua Sharon Y. L.,Day Alexander,Desai Parul,Egan Cathy,Fruttiger Marcus,Garway-Heath David F.,Hardcastle Alison,Khaw Sir Peng T.,Moore Tony,Sivaprasad Sobha,Strouthidis Nicholas,Thomas Dhanes,Tufail Adnan,Viswanathan Ananth C.,Dhillon Bal,Macgillivray Tom,Sudlow Cathie,Vitart Veronique,Doney Alexander,Trucco Emanuele,Guggeinheim Jeremy A.,Morgan James E.,Hammond Chris J.,Williams Katie,Hysi Pirro,Harding Simon P.,Zheng Yalin,Luben Robert,Luthert Phil,Sun Zihan,McKibbin Martin,O’Sullivan Eoin,Oram Richard,Weedon Mike,Owen Chris G.,Rudnicka Alicja R.,Sattar Naveed,Steel David,Stratton Irene,Tapp Robyn,Yates Max M.,Petzold Axel,Madhusudhan Savita,Altmann AndreORCID,Lee Aaron Y.,Topol Eric J.ORCID,Denniston Alastair K.ORCID,Alexander Daniel C.ORCID,Keane Pearse A.,

Abstract

AbstractMedical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3