Non-Abelian braiding of graph vertices in a superconducting processor
Author:
, Andersen T. I., Lensky Y. D.ORCID, Kechedzhi K., Drozdov I. K.ORCID, Bengtsson A., Hong S., Morvan A.ORCID, Mi X.ORCID, Opremcak A., Acharya R., Allen R., Ansmann M., Arute F., Arya K., Asfaw A., Atalaya J., Babbush R., Bacon D., Bardin J. C.ORCID, Bortoli G., Bourassa A.ORCID, Bovaird J., Brill L., Broughton M., Buckley B. B., Buell D. A., Burger T., Burkett B.ORCID, Bushnell N., Chen Z., Chiaro B., Chik D., Chou C., Cogan J., Collins R., Conner P., Courtney W., Crook A. L., Curtin B., Debroy D. M., Del Toro Barba A.ORCID, Demura S.ORCID, Dunsworth A., Eppens D.ORCID, Erickson C., Faoro L., Farhi E., Fatemi R., Ferreira V. S., Burgos L. F., Forati E., Fowler A. G., Foxen B., Giang W., Gidney C., Gilboa D., Giustina M., Gosula R.ORCID, Dau A. G., Gross J. A.ORCID, Habegger S.ORCID, Hamilton M. C., Hansen M., Harrigan M. P.ORCID, Harrington S. D.ORCID, Heu P., Hilton J., Hoffmann M. R.ORCID, Huang T., Huff A., Huggins W. J.ORCID, Ioffe L. B., Isakov S. V., Iveland J., Jeffrey E., Jiang Z.ORCID, Jones C., Juhas P.ORCID, Kafri D., Khattar T., Khezri M., Kieferová M., Kim S., Kitaev A., Klimov P. V., Klots A. R., Korotkov A. N., Kostritsa F., Kreikebaum J. M., Landhuis D.ORCID, Laptev P., Lau K.-M., Laws L., Lee J., Lee K. W., Lester B. J., Lill A. T., Liu W., Locharla A., Lucero E., Malone F. D., Martin O., McClean J. R.ORCID, McCourt T., McEwen M.ORCID, Miao K. C., Mieszala A., Mohseni M.ORCID, Montazeri S.ORCID, Mount E., Movassagh R., Mruczkiewicz W.ORCID, Naaman O.ORCID, Neeley M.ORCID, Neill C.ORCID, Nersisyan A., Newman M., Ng J. H.ORCID, Nguyen A., Nguyen M., Niu M. Y., O’Brien T. E., Omonije S., Petukhov A., Potter R., Pryadko L. P., Quintana C., Rocque C., Rubin N. C., Saei N., Sank D.ORCID, Sankaragomathi K., Satzinger K. J.ORCID, Schurkus H. F.ORCID, Schuster C., Shearn M. J., Shorter A., Shutty N., Shvarts V., Skruzny J., Smith W. C., Somma R., Sterling G., Strain D., Szalay M., Torres A., Vidal G., Villalonga B., Heidweiller C. V.ORCID, White T., Woo B. W. K.ORCID, Xing C., Yao Z. J., Yeh P.ORCID, Yoo J., Young G., Zalcman A.ORCID, Zhang Y., Zhu N.ORCID, Zobrist N.ORCID, Neven H.ORCID, Boixo S.ORCID, Megrant A.ORCID, Kelly J.ORCID, Chen Y., Smelyanskiy V., Kim E.-A.ORCID, Aleiner I.ORCID, Roushan P.ORCID
Abstract
AbstractIndistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4–8. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals9–22, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer code and unitary protocol23to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference47 articles.
1. Sakurai, J. J. Modern Quantum Mechanics (Addison-Wesley, 1993). 2. Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B. 37, 1–23 (1977). 3. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982). 4. Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990). 5. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|