Non-Abelian braiding of graph vertices in a superconducting processor

Author:

,Andersen T. I.,Lensky Y. D.ORCID,Kechedzhi K.,Drozdov I. K.ORCID,Bengtsson A.,Hong S.,Morvan A.ORCID,Mi X.ORCID,Opremcak A.,Acharya R.,Allen R.,Ansmann M.,Arute F.,Arya K.,Asfaw A.,Atalaya J.,Babbush R.,Bacon D.,Bardin J. C.ORCID,Bortoli G.,Bourassa A.ORCID,Bovaird J.,Brill L.,Broughton M.,Buckley B. B.,Buell D. A.,Burger T.,Burkett B.ORCID,Bushnell N.,Chen Z.,Chiaro B.,Chik D.,Chou C.,Cogan J.,Collins R.,Conner P.,Courtney W.,Crook A. L.,Curtin B.,Debroy D. M.,Del Toro Barba A.ORCID,Demura S.ORCID,Dunsworth A.,Eppens D.ORCID,Erickson C.,Faoro L.,Farhi E.,Fatemi R.,Ferreira V. S.,Burgos L. F.,Forati E.,Fowler A. G.,Foxen B.,Giang W.,Gidney C.,Gilboa D.,Giustina M.,Gosula R.ORCID,Dau A. G.,Gross J. A.ORCID,Habegger S.ORCID,Hamilton M. C.,Hansen M.,Harrigan M. P.ORCID,Harrington S. D.ORCID,Heu P.,Hilton J.,Hoffmann M. R.ORCID,Huang T.,Huff A.,Huggins W. J.ORCID,Ioffe L. B.,Isakov S. V.,Iveland J.,Jeffrey E.,Jiang Z.ORCID,Jones C.,Juhas P.ORCID,Kafri D.,Khattar T.,Khezri M.,Kieferová M.,Kim S.,Kitaev A.,Klimov P. V.,Klots A. R.,Korotkov A. N.,Kostritsa F.,Kreikebaum J. M.,Landhuis D.ORCID,Laptev P.,Lau K.-M.,Laws L.,Lee J.,Lee K. W.,Lester B. J.,Lill A. T.,Liu W.,Locharla A.,Lucero E.,Malone F. D.,Martin O.,McClean J. R.ORCID,McCourt T.,McEwen M.ORCID,Miao K. C.,Mieszala A.,Mohseni M.ORCID,Montazeri S.ORCID,Mount E.,Movassagh R.,Mruczkiewicz W.ORCID,Naaman O.ORCID,Neeley M.ORCID,Neill C.ORCID,Nersisyan A.,Newman M.,Ng J. H.ORCID,Nguyen A.,Nguyen M.,Niu M. Y.,O’Brien T. E.,Omonije S.,Petukhov A.,Potter R.,Pryadko L. P.,Quintana C.,Rocque C.,Rubin N. C.,Saei N.,Sank D.ORCID,Sankaragomathi K.,Satzinger K. J.ORCID,Schurkus H. F.ORCID,Schuster C.,Shearn M. J.,Shorter A.,Shutty N.,Shvarts V.,Skruzny J.,Smith W. C.,Somma R.,Sterling G.,Strain D.,Szalay M.,Torres A.,Vidal G.,Villalonga B.,Heidweiller C. V.ORCID,White T.,Woo B. W. K.ORCID,Xing C.,Yao Z. J.,Yeh P.ORCID,Yoo J.,Young G.,Zalcman A.ORCID,Zhang Y.,Zhu N.ORCID,Zobrist N.ORCID,Neven H.ORCID,Boixo S.ORCID,Megrant A.ORCID,Kelly J.ORCID,Chen Y.,Smelyanskiy V.,Kim E.-A.ORCID,Aleiner I.ORCID,Roushan P.ORCID

Abstract

AbstractIndistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4–8. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals9–22, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer code and unitary protocol23to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3