Organic bipolar transistors

Author:

Wang Shu-Jen,Sawatzki Michael,Darbandy GhaderORCID,Talnack FelixORCID,Vahland Jörn,Malfois MarcORCID,Kloes AlexanderORCID,Mannsfeld StefanORCID,Kleemann HansORCID,Leo KarlORCID

Abstract

AbstractDevices made using thin-film semiconductors have attracted much interest recently owing to new application possibilities. Among materials systems suitable for thin-film electronics, organic semiconductors are of particular interest; their low cost, biocompatible carbon-based materials and deposition by simple techniques such as evaporation or printing enable organic semiconductor devices to be used for ubiquitous electronics, such as those used on or in the human body or on clothing and packages1–3. The potential of organic electronics can be leveraged only if the performance of organic transistors is improved markedly. Here we present organic bipolar transistors with outstanding device performance: a previously undescribed vertical architecture and highly crystalline organic rubrene thin films yield devices with high differential amplification (more than 100) and superior high-frequency performance over conventional devices. These bipolar transistors also give insight into the minority carrier diffusion length—a key parameter in organic semiconductors. Our results open the door to new device concepts of high-performance organic electronics with ever faster switching speeds.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of phonon thermal transport in monolayer and bilayer 2D organic C60 networks;International Journal of Heat and Mass Transfer;2024-05

2. High‐Frequency fT and fmax in Organic Transistors: Performance and Perspective;Advanced Electronic Materials;2024-02

3. Ionic Transistors;ACS Nano;2024-01-29

4. Two‐Dimensional Conjugated Polymers: a New Choice For Organic Thin‐Film Transistors;Chemistry – An Asian Journal;2024-01-11

5. Ambipolar Doping in π-Conjugated Polymers;ACS Applied Electronic Materials;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3