Influence of pump laser fluence on ultrafast myoglobin structural dynamics

Author:

Barends Thomas R. M.ORCID,Gorel Alexander,Bhattacharyya Swarnendu,Schirò Giorgio,Bacellar CamilaORCID,Cirelli ClaudioORCID,Colletier Jacques-Philippe,Foucar Lutz,Grünbein Marie Luise,Hartmann Elisabeth,Hilpert MarioORCID,Holton James M.ORCID,Johnson Philip J. M.ORCID,Kloos MarcoORCID,Knopp GregorORCID,Marekha Bogdan,Nass Karol,Nass Kovacs Gabriela,Ozerov Dmitry,Stricker Miriam,Weik Martin,Doak R. Bruce,Shoeman Robert L.,Milne Christopher J.ORCID,Huix-Rotllant MiquelORCID,Cammarata Marco,Schlichting IlmeORCID

Abstract

AbstractHigh-intensity femtosecond pulses from an X-ray free-electron laser enable pump–probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3–17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump–probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe–CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump–probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump–probe experiments20 such that mechanistically relevant insight emerges.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3