A transcriptional switch controls sex determination in Plasmodium falciparum

Author:

Gomes A. R.,Marin-Menendez A.,Adjalley S. H.,Bardy C.,Cassan C.,Lee M. C. S.ORCID,Talman A. M.ORCID

Abstract

AbstractSexual reproduction and meiotic sex are deeply rooted in the eukaryotic tree of life, but mechanisms determining sex or mating types are extremely varied and are only well characterized in a few model organisms1. In malaria parasites, sexual reproduction coincides with transmission to the vector host. Sex determination is non-genetic, with each haploid parasite capable of producing either a male or a female gametocyte in the human host2. The hierarchy of events and molecular mechanisms that trigger sex determination and maintenance of sexual identity are yet to be elucidated. Here we show that the male development 1 (md1) gene is both necessary and sufficient for male fate determination in the human malaria parasitePlasmodium falciparum. We show that Md1 has a dual function stemming from two separate domains: in sex determination through its N terminus and in male development from its conserved C-terminal LOTUS/OST-HTH domain. We further identify a bistable switch at themd1locus, which is coupled with sex determination and ensures that the male-determining gene is not expressed in the female lineage. We describe one of only a few known non-genetic mechanisms of sex determination in a eukaryote and highlight Md1 as a potential target for interventions that block malaria transmission.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3