Persistent interaction patterns across social media platforms and over time

Author:

Avalle MicheleORCID,Di Marco Niccolò,Etta Gabriele,Sangiorgio EmanueleORCID,Alipour Shayan,Bonetti Anita,Alvisi Lorenzo,Scala Antonio,Baronchelli Andrea,Cinelli MatteoORCID,Quattrociocchi WalterORCID

Abstract

AbstractGrowing concern surrounds the impact of social media platforms on public discourse1–4 and their influence on social dynamics5–9, especially in the context of toxicity10–12. Here, to better understand these phenomena, we use a comparative approach to isolate human behavioural patterns across multiple social media platforms. In particular, we analyse conversations in different online communities, focusing on identifying consistent patterns of toxic content. Drawing from an extensive dataset that spans eight platforms over 34 years—from Usenet to contemporary social media—our findings show consistent conversation patterns and user behaviour, irrespective of the platform, topic or time. Notably, although long conversations consistently exhibit higher toxicity, toxic language does not invariably discourage people from participating in a conversation, and toxicity does not necessarily escalate as discussions evolve. Our analysis suggests that debates and contrasting sentiments among users significantly contribute to more intense and hostile discussions. Moreover, the persistence of these patterns across three decades, despite changes in platforms and societal norms, underscores the pivotal role of human behaviour in shaping online discourse.

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Ecology of (dis-)Engagement in Digital Environments;Topoi;2024-09-11

2. A Topology-Based Approach for Predicting Toxic Outcomes on Twitter and YouTube;IEEE Transactions on Network Science and Engineering;2024-09

3. Amplifying Hate: Mapping the Political Twitter Ecosystem and Toxic Enablers in Greece;Social Media and Modern Society [Working Title];2024-07-23

4. Followers do not dictate the virality of news outlets on social media;PNAS Nexus;2024-06-28

5. Unveiling the waves of mis- and disinformation from social media;International Journal of Modeling, Simulation, and Scientific Computing;2024-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3