An analog-AI chip for energy-efficient speech recognition and transcription

Author:

Ambrogio S.ORCID,Narayanan P.,Okazaki A.ORCID,Fasoli A.ORCID,Mackin C.ORCID,Hosokawa K.,Nomura A.ORCID,Yasuda T.,Chen A.,Friz A.,Ishii M.ORCID,Luquin J.,Kohda Y.,Saulnier N.,Brew K.ORCID,Choi S.,Ok I.,Philip T.,Chan V.,Silvestre C.,Ahsan I.,Narayanan V.,Tsai H.,Burr G. W.ORCID

Abstract

AbstractModels of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks1,2, but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)3–7 can provide better energy efficiency by performing matrix–vector multiplications in parallel on ‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SWeq) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SWeq accuracy for a small keyword-spotting network and near-SWeq accuracy on the much larger MLPerf8 recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference41 articles.

1. Vaswani, A. et al. Attention is all you need. In NIPS17: Proc. 31st Conference on Neural Information Processing Systems (eds. von Luxburg, U. et al.) 6000–6010 (Curran Associates, 2017).

2. Chan, W. et al. SpeechStew: simply mix all available speech recognition data to train one large neural network. Preprint at https://arxiv.org/abs/2104.02133 (2021).

3. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

4. Narayanan, P. et al. Fully on-chip MAC at 14 nm enabled by accurate row-wise programming of PCM-based weights and parallel vector-transport in duration-format. IEEE Trans. Electron. Devices 68, 6629–6636 (2021).

5. Khaddam-Aljameh, R. et al. HERMES-core—a 1.59-TOPS/mm2 PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3