Black holes regulate cool gas accretion in massive galaxies

Author:

Wang TaoORCID,Xu Ke,Wu YuxuanORCID,Shi Yong,Elbaz David,Ho Luis C.ORCID,Zhang Zhi-YuORCID,Gu Qiusheng,Wang Yijun,Shu Chenggang,Yuan Feng,Xia Xiaoyang,Wang Kai

Abstract

AbstractThe nucleus of almost all massive galaxies contains a supermassive black hole (BH)1. The feedback from the accretion of these BHs is often considered to have crucial roles in establishing the quiescence of massive galaxies2–14, although some recent studies show that even galaxies hosting the most active BHs do not exhibit a reduction in their molecular gas reservoirs or star formation rates15–17. Therefore, the influence of BHs on galaxy star formation remains highly debated and lacks direct evidence. Here, based on a large sample of nearby galaxies with measurements of masses of both BHs and atomic hydrogen (HI), the main component of the interstellar medium18, we show that the HI gas mass to stellar masses ratio (μHI = MHI/M) is more strongly correlated with BH masses (MBH) than with any other galaxy parameters, including stellar mass, stellar mass surface density and bulge masses. Moreover, once the μHIMBH correlation is considered, μHI loses dependence on other galactic parameters, demonstrating that MBH serves as the primary driver of μHI. These findings provide important evidence for how the accumulated energy from BH accretion regulates the cool gas content in galaxies, by ejecting interstellar medium gas and/or suppressing gas cooling from the circumgalactic medium.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3