Sensitivity of density-dependent threshold to species composition in arthropod aggregates

Author:

Broly Pierre,Ectors Quentin,Decuyper Geoffrey,Nicolis Stamatios C.,Deneubourg Jean-Louis

Abstract

Abstract How mixed-species groups perform collective behaviours provides unique insights into the mechanisms that drive social interactions. Herein, we followed the aggregation process of two isopod species under monospecific and heterospecific conditions at three population densities. Our experimental results show that the formation of both the monospecific and heterospecific groups responds to a similar threshold function. Furthermore, the two species contribute equally to the mixed-species aggregate growth and are not spatiotemporally segregated. However, we show that the cohesion is weaker and the probability of forming aggregations is lower in heterospecific groups than in monospecific populations. Thus, our results show that amplification processes are shared between species, but that the weighting given to conspecific and heterospecific information differs. We develop a theoretical model to test this hypothesis. The model reproduces our experimental data and shows that a relatively low level of inter-attractions between species is able to generate mixed-species aggregates. Moreover the greater the total population, the lower this parameter value is needed to observe aggregation in both species. This highlights the importance to study not only qualitatively but also quantitatively the heterospecific interactions in mixed-species groups. Finally, the patterns observed could be biologically relevant in favouring the association between species.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3