Abstract
AbstractAcute Graft versus Host Disease (aGvHD) grades 2–4 occurs in 15–60% of pediatric patients undergoing allogeneic haematopoietic stem-cell transplantation (allo-HSCT). The collateral damage to normal tissue by conditioning regimens administered prior to allo-HSCT serve as an initial trigger for aGvHD. DNA-repair mechanisms may play an important role in mitigating this initial damage, and so the variants in corresponding DNA-repair protein-coding genes via affecting their quantity and/or function. We explored 51 variants within 17 DNA-repair genes for their association with aGvHD grades 2–4 in 60 pediatric patients. The cumulative incidence of aGvHD 2–4 was 12% (n = 7) in the exploratory cohort. MGMT rs10764881 (G>A) and EXO rs9350 (c.2270C>T) variants were associated with aGvHD 2–4 [Odds ratios = 14.8 (0 events out of 40 in rs10764881 GG group) and 11.5 (95% CI: 2.3–191.8), respectively, multiple testing corrected p ≤ 0.001]. Upon evaluation in an extended cohort (n = 182) with an incidence of aGvHD 2–4 of 22% (n = 40), only MGMT rs10764881 (G>A) remained significant (adjusted HR = 2.05 [95% CI: 1.06–3.94]; p = 0.03) in the presence of other clinical risk factors. Higher MGMT expression was seen in GG carriers for rs10764881 and was associated with higher IC50 of Busulfan in lymphoblastoid cells. MGMT rs10764881 carrier status could predict aGvHD occurrence in pediatric patients undergoing allo-HSCT.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Oak Foundation
CANSESARCH Foundation, Oak Foundation
CANSEARCH Foundation
CANSEARCH Foundation, Oak Foundation
CANSEARCH FOUNDATION
The Leukaemia Research and Support Fund
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology,Genetics,Molecular Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献