Abstract
AbstractBrain functional connectivity (FC) derived from functional magnetic resonance imaging has been serving as a potential ‘fingerprint’ for adults. However, cross-scan variation of FC can be substantial and carries biological information, especially during childhood. Here we performed a large-scale cross-sectional analysis on cross-scan FC stability and its associations with a diverse range of health measures in children. Functional network connectivity (FNC) was extracted via a hybrid independent component analysis framework on 9,071 participants and compared across four scans. We found that FNC can identify a given child from a large group with high accuracy (maximum >94%) and replicated the results across multiple scans. We then performed a linear mixed-effects model to investigate how cross-scan FNC stability was predictive of children’s behaviour. Although we could not find strong relationships between FNC stability and children’s behaviour, we observed significant but small associations between them (maximum r = 0.1070), with higher stability correlated with better cognitive performance, longer sleep duration and less psychotic expression. Via a multivariate analysis method, we captured larger effects between FNC stability and children’s cognitive performance (maximum r = 0.2932), which further proved the relevance of FNC stability to neurocognitive development. Overall, our findings show that a child’s connectivity profile is not only intrinsic but also exhibits reliable variability across scans, regardless of brain growth and development. Cross-scan connectivity stability may serve as a valuable neuroimaging feature to draw inferences on early cognitive and psychiatric behaviours in children.
Funder
Foundation for the National Institutes of Health
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献