Federated benchmarking of medical artificial intelligence with MedPerf

Author:

Karargyris AlexandrosORCID,Umeton RenatoORCID,Sheller Micah J.ORCID,Aristizabal Alejandro,George Johnu,Wuest Anna,Pati SarthakORCID,Kassem HasanORCID,Zenk MaximilianORCID,Baid Ujjwal,Narayana Moorthy Prakash,Chowdhury Alexander,Guo Junyi,Nalawade SahilORCID,Rosenthal JacobORCID,Kanter David,Xenochristou Maria,Beutel Daniel J.,Chung Verena,Bergquist TimothyORCID,Eddy James,Abid Abubakar,Tunstall Lewis,Sanseviero Omar,Dimitriadis Dimitrios,Qian YimingORCID,Xu XinxingORCID,Liu Yong,Goh Rick Siow Mong,Bala Srini,Bittorf Victor,Puchala Sreekar Reddy,Ricciuti Biagio,Samineni SoujanyaORCID,Sengupta Eshna,Chaudhari AkshayORCID,Coleman Cody,Desinghu Bala,Diamos Gregory,Dutta Debo,Feddema Diane,Fursin GrigoriORCID,Huang Xinyuan,Kashyap SatyanandaORCID,Lane Nicholas,Mallick Indranil,Mascagni PietroORCID,Mehta VirendraORCID,Moraes Cassiano Ferro,Natarajan Vivek,Nikolov Nikola,Padoy Nicolas,Pekhimenko Gennady,Reddi Vijay Janapa,Reina G. Anthony,Ribalta Pablo,Singh Abhishek,Thiagarajan Jayaraman J.,Albrecht Jacob,Wolf Thomas,Miller Geralyn,Fu HuazhuORCID,Shah Prashant,Xu Daguang,Yadav Poonam,Talby David,Awad Mark M.,Howard Jeremy P.,Rosenthal Michael,Marchionni LuigiORCID,Loda MassimoORCID,Johnson Jason M.ORCID,Bakas SpyridonORCID,Mattson PeterORCID, , ,

Abstract

AbstractMedical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3