Weak signal extraction enabled by deep neural network denoising of diffraction data

Author:

Oppliger JensORCID,Denner M. MichaelORCID,Küspert JuliaORCID,Frison RuggeroORCID,Wang QisiORCID,Morawietz Alexander,Ivashko OlehORCID,Dippel Ann-ChristinORCID,Zimmermann Martin vonORCID,Biało IzabelaORCID,Martinelli Leonardo,Fauqué Benoît,Choi JaewonORCID,Garcia-Fernandez Mirian,Zhou Ke-Jin,Christensen Niels Bech,Kurosawa Tohru,Momono Naoki,Oda Migaku,Natterer Fabian D.,Fischer Mark H.ORCID,Neupert Titus,Chang Johan

Abstract

AbstractThe removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Universität Zürich

ONR

EC | Horizon 2020 Framework Programme

Research Grants Council of Hong Kong

Swiss Government Excellence Scholarship

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Jain, V. & Seung, S. Natural image denoising with convolutional networks. In Advances in Neural Information Processing Systems Vol. 21 (eds Koller, D. et al.) (Curran Associates, 2009).

2. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017).

3. Zhang, K., Zuo, W. & Zhang, L. FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27, 4608–4622 (2018).

4. Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, K.) 2965–2974 (PMLR, 2018).

5. Lefkimmiatis, S. Universal denoising networks : a novel CNN architecture for image denoising. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 3204–3213 (IEEE, 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3