1. Schwab, P., Linhardt, L. & Karlen, W. Perfect match: a simple method for learning representations for counterfactual inference with neural networks. Preprint at https://arxiv.org/abs/1810.00656 (2018).
2. Alaa, A. M., Weisz, M. & Van Der Schaar, M. “Deep counterfactual networks with propensity-dropout,” ICML 2017 – Workshop on Principled Approaches to Deep Learning. Preprint at https://arxiv.org/abs/1706.05966 (2017).
3. Shi, C., Blei, D. M. & Veitch, V. Adapting neural networks for the estimation of treatment effects. In Advances of Neural Information Processing Systems (NeurIPS). Preprint at https://arxiv.org/abs/1906.02120 (NeurIPS, 2019).
4. Pearl, J. Causality 2nd edn (Cambridge University Press, 2009).
5. Bareinboim, E., Correa, J. D., Ibeling, D. & Icard, T. On Pearl’s Hierarchy and the Foundations of Causal Inference (Columbia University–Stanford University, 2020).