Invalid SMILES are beneficial rather than detrimental to chemical language models

Author:

Skinnider Michael A.ORCID

Abstract

AbstractGenerative machine learning models have attracted intense interest for their ability to sample novel molecules with desired chemical or biological properties. Among these, language models trained on SMILES (Simplified Molecular-Input Line-Entry System) representations have been subject to the most extensive experimental validation and have been widely adopted. However, these models have what is perceived to be a major limitation: some fraction of the SMILES strings that they generate are invalid, meaning that they cannot be decoded to a chemical structure. This perceived shortcoming has motivated a remarkably broad spectrum of work designed to mitigate the generation of invalid SMILES or correct them post hoc. Here I provide causal evidence that the ability to produce invalid outputs is not harmful but is instead beneficial to chemical language models. I show that the generation of invalid outputs provides a self-corrective mechanism that filters low-likelihood samples from the language model output. Conversely, enforcing valid outputs produces structural biases in the generated molecules, impairing distribution learning and limiting generalization to unseen chemical space. Together, these results refute the prevailing assumption that invalid SMILES are a shortcoming of chemical language models and reframe them as a feature, not a bug.

Funder

Ludwig Cancer Research

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transcriptionally Conditional Recurrent Neural Network for De Novo Drug Design;Journal of Chemical Information and Modeling;2024-07-25

2. Multi-Objective Molecular Design in Constrained Latent Space;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3