Emergent behaviour and neural dynamics in artificial agents tracking odour plumes

Author:

Singh Satpreet H.ORCID,van Breugel Floris,Rao Rajesh P. N.,Brunton Bingni W.

Abstract

AbstractTracking an odour plume to locate its source under variable wind and plume statistics is a complex task. Flying insects routinely accomplish such tracking, often over long distances, in pursuit of food or mates. Several aspects of this remarkable behaviour and its underlying neural circuitry have been studied experimentally. Here we take a complementary in silico approach to develop an integrated understanding of their behaviour and neural computations. Specifically, we train artificial recurrent neural network agents using deep reinforcement learning to locate the source of simulated odour plumes that mimic features of plumes in a turbulent flow. Interestingly, the agents’ emergent behaviours resemble those of flying insects, and the recurrent neural networks learn to compute task-relevant variables with distinct dynamic structures in population activity. Our analyses put forward a testable behavioural hypothesis for tracking plumes in changing wind direction, and we provide key intuitions for memory requirements and neural dynamics in odour plume tracking.

Funder

United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory

United States Department of Defense | Defense Advanced Research Projects Agency

National Science Foundation

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Washington Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3