A taxonomy and review of generalization research in NLP

Author:

Hupkes Dieuwke,Giulianelli MarioORCID,Dankers Verna,Artetxe Mikel,Elazar Yanai,Pimentel TiagoORCID,Christodoulopoulos ChristosORCID,Lasri Karim,Saphra Naomi,Sinclair Arabella,Ulmer Dennis,Schottmann Florian,Batsuren KhuyagbaatarORCID,Sun Kaiser,Sinha Koustuv,Khalatbari Leila,Ryskina MariaORCID,Frieske RitaORCID,Cotterell Ryan,Jin ZhijingORCID

Abstract

AbstractThe ability to generalize well is one of the primary desiderata for models of natural language processing (NLP), but what ‘good generalization’ entails and how it should be evaluated is not well understood. In this Analysis we present a taxonomy for characterizing and understanding generalization research in NLP. The proposed taxonomy is based on an extensive literature review and contains five axes along which generalization studies can differ: their main motivation, the type of generalization they aim to solve, the type of data shift they consider, the source by which this data shift originated, and the locus of the shift within the NLP modelling pipeline. We use our taxonomy to classify over 700 experiments, and we use the results to present an in-depth analysis that maps out the current state of generalization research in NLP and make recommendations for which areas deserve attention in the future.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Evolutionary Computing Ensemble Learning Model for Sentiment Analysis;Applied Sciences;2024-08-04

2. COMI: COrrect and MItigate Shortcut Learning Behavior in Deep Neural Networks;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. STIRNet: A Spatio-Temporal Network for Air Formation Targets Intention Recognition;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3