Hydroxychloroquine and a low antiresorptive activity bisphosphonate conjugate prevent and reverse ovariectomy-induced bone loss in mice through dual antiresorptive and anabolic effects

Author:

Yao ZhenqiangORCID,Ayoub Akram,Srinivasan Venkatesan,Wu Jun,Tang Churou,Duan Rong,Milosavljevic Aleksa,Xing LianpingORCID,Ebetino Frank H.,Frontier Alison J.,Boyce Brendan F.ORCID

Abstract

AbstractOsteoporosis remains incurable. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation, while the anabolic agent, teriparatide, does not inhibit bone resorption, and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects. Thus, there is an unmet need to develop dual antiresorptive and anabolic agents to prevent and treat osteoporosis. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation. We attempted to covalently link HCQ to a hydroxyalklyl BP (HABP) with anticipated low antiresorptive activity, to target delivery of HCQ to bone to test if this targeting increases its efficacy to prevent TRAF3 degradation in the bone microenvironment and thus reduce bone resorption and increase bone formation, while reducing its systemic side effects. Unexpectedly, HABP-HCQ was found to exist as a salt in aqueous solution, composed of a protonated HCQ cation and a deprotonated HABP anion. Nevertheless, it inhibited osteoclastogenesis, stimulated osteoblast differentiation, and increased TRAF3 protein levels in vitro. HABP-HCQ significantly inhibited both osteoclast formation and bone marrow fibrosis in mice given multiple daily PTH injections. In contrast, HCQ inhibited marrow fibrosis, but not osteoclast formation, while the HABP alone inhibited osteoclast formation, but not fibrosis, in the mice. HABP-HCQ, but not HCQ, prevented trabecular bone loss following ovariectomy in mice and, importantly, increased bone volume in ovariectomized mice with established bone loss because HABP-HCQ increased bone formation and decreased bone resorption parameters simultaneously. In contrast, HCQ increased bone formation, but did not decrease bone resorption parameters, while HABP also restored the bone lost in ovariectomized mice, but it inhibited parameters of both bone resorption and formation. Our findings suggest that the combination of HABP and HCQ could have dual antiresorptive and anabolic effects to prevent and treat osteoporosis.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Aging

U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3