Fetuin-A is an immunomodulator and a potential therapeutic option in BMP4-dependent heterotopic ossification and associated bone mass loss

Author:

Kan ChenORCID,Yang Jiazhao,Fan Haitao,Dai Yuanjuan,Wang Xingxing,Chen Rui,Liu Jia,Meng Xiangyue,Wang Wei,Li Guiling,Zhou Jiao,Zhang Ya,Zhu Wanbo,Fang Shiyuan,Wei Haiming,Zheng HongORCID,Wang Siying,Ni FangORCID

Abstract

AbstractHeterotopic ossification (HO) is the abnormal formation of bone in extraskeletal sites. However, the mechanisms linking HO pathogenesis with bone mass dysfunction remain unclear. Here, we showed that mice harboring injury-induced and BMP4-dependent HO exhibit bone mass loss similar to that presented by patients with HO. Moreover, we found that injury-induced hyperinflammatory responses at the injury site triggered HO initiation but did not result in bone mass loss at 1 day post-injury (dpi). In contrast, a suppressive immune response promoted HO propagation and bone mass loss by 7 dpi. Correcting immune dysregulation by PD1/PDL1 blockade dramatically alleviated HO propagation and bone mass loss. We further demonstrated that fetuin-A (FetA), which has been frequently detected in HO lesions but rarely observed in HO-adjacent normal bone, acts as an immunomodulator to promote PD1 expression and M2 macrophage polarization, leading to immunosuppression. Intervention with recombinant FetA inhibited hyperinflammation and prevented HO and associated bone mass loss. Collectively, our findings provide new insights into the osteoimmunological interactions that occur during HO formation and suggest that FetA is an immunosuppressor and a potential therapeutic option for the treatment of HO.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Physiology,Histology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3