Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere

Author:

Zhang Dengke,Wang Xin-Ming,Li Tie-Fu,Luo Xiao-Qing,Wu Weidong,Nori FrancoORCID,You JQ

Abstract

AbstractHybridizing collective spin excitations and a cavity with high cooperativity provides a new research subject in the field of cavity quantum electrodynamics and can also have potential applications to quantum information. Here we report an experimental study of cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet (YIG) sphere at both cryogenic and room temperatures. We observe for the first time a strong coupling of the same cavity mode to both a ferromagnetic-resonance (FMR) mode and a magnetostatic (MS) mode near FMR in the quantum limit. This is achieved at a temperature ~22 mK, where the average microwave photon number in the cavity is less than one. At room temperature, we also observe strong coupling of the cavity mode to the FMR mode in the same YIG sphere and find a slight increase of the damping rate of the FMR mode. These observations reveal the extraordinary robustness of the FMR mode against temperature. However, the MS mode becomes unobservable at room temperature in the measured transmission spectrum of the microwave cavity containing the YIG sphere. Our numerical simulations show that this is due to a drastic increase of the damping rate of the MS mode.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3