Large exomoons unlikely around Kepler-1625 b and Kepler-1708 b

Author:

Heller RenéORCID,Hippke Michael

Abstract

AbstractThere are more than 200 moons in our Solar System, but their relatively small radii make similarly sized extrasolar moons very hard to detect with current instruments. The best exomoon candidates so far are two nearly Neptune-sized bodies orbiting the Jupiter-sized transiting exoplanets Kepler-1625 b and Kepler-1708 b, but their existence has been contested. Here we reanalyse the Hubble and Kepler data used to identify the two exomoon candidates employing nested sampling and Bayesian inference techniques coupled with a fully automated photodynamical transit model. We find that the evidence for the Kepler-1625 b exomoon candidate comes almost entirely from the shallowness of one transit observed with Hubble. We interpret this as a fitting artefact in which a moon transit is used to compensate for the unconstrained stellar limb darkening. We also find much lower statistical evidence for the exomoon candidate around Kepler-1708 b than previously reported. We suggest that visual evidence of the claimed exomoon transits is corrupted by stellar activity in the Kepler light curve. Our injection-retrieval experiments of simulated transits in the original Kepler data reveal false positive rates of 10.9% and 1.6% for Kepler-1625 b and Kepler-1708 b, respectively. Moreover, genuine transit signals of large exomoons would tend to exhibit much higher Bayesian evidence than these two claims. We conclude that neither Kepler-1625 b nor Kepler-1708 b are likely to be orbited by a large exomoon.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

Springer Science and Business Media LLC

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3