Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer

Author:

Mercan CanerORCID,Balkenhol Maschenka,Salgado RobertoORCID,Sherman MarkORCID,Vielh Philippe,Vreuls Willem,Polónia António,Horlings Hugo M.ORCID,Weichert Wilko,Carter Jodi M.,Bult Peter,Christgen Matthias,Denkert CarstenORCID,van de Vijver KoenORCID,Bokhorst John-Melle,van der Laak JeroenORCID,Ciompi FrancescoORCID

Abstract

AbstractTo guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced histopathologist. Typically, this tumor grade consists of three components, one of which is the nuclear pleomorphism score (the extent of abnormalities in the overall appearance of tumor nuclei). The degree of nuclear pleomorphism is subjectively classified from 1 to 3, where a score of 1 most closely resembles epithelial cells of normal breast epithelium and 3 shows the greatest abnormalities. Establishing numerical criteria for grading nuclear pleomorphism is challenging, and inter-observer agreement is poor. Therefore, we studied the use of deep learning to develop fully automated nuclear pleomorphism scoring in breast cancer. The reference standard used for training the algorithm consisted of the collective knowledge of an international panel of 10 pathologists on a curated set of regions of interest covering the entire spectrum of tumor morphology in breast cancer. To fully exploit the information provided by the pathologists, a first-of-its-kind deep regression model was trained to yield a continuous scoring rather than limiting the pleomorphism scoring to the standard three-tiered system. Our approach preserves the continuum of nuclear pleomorphism without necessitating a large data set with explicit annotations of tumor nuclei. Once translated to the traditional system, our approach achieves top pathologist-level performance in multiple experiments on regions of interest and whole-slide images, compared to a panel of 10 and 4 pathologists, respectively.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3