Spatial immunophenotypes orchestrate prognosis in triple-negative breast cancer with Miller-Payne grade 4 following neoadjuvant chemotherapy

Author:

Ma Jianli,Deng Yuwei,Chen Dawei,Li Xiaomei,Yu Zhiyong,Wang Haibo,Zhong Lei,Li Yingjie,Wang Chengqin,Li Xiang,Yu Jinming,Zhang QingyuanORCID

Abstract

AbstractSome triple-negative breast cancer (TNBC) patients evaluated as Miller-Payne 4 with ypN0 after neoadjuvant chemotherapy (NACT) who have better prognoses should avoid escalation of therapy. We aim to identify these patients by evaluating pretherapeutic spatial distributions of immunophenotypes. Our retrospective study in patients with TNBC assessed as Miller-Payne grade 4/5 with ypN0 showed that Miller-Payne 4 with ypN0 group had poorer 5-year disease-free survival (DFS, 63.8% vs. 83.0%, p = 0.003) and the 5-year overall survival (OS, 71.0% vs. 85.5%, p = 0.007) than Miller-Payne 5 with ypN0 group. High TILs were significantly associated with better DFS and OS in patients with Miller-Payne 4 and ypN0 (both p = 0.016). Spatially, detected by multiplexed ion beam imaging by the time of flight combined with proteomics, tumors assessed as Miller-Payne 4 and ypN0 with good prognosis exhibited an inflamed phenotype, with dominant CD8+ T cells on tumor center, few scattered CD68+ myeloid-derived cells far away from T cells, and deposit of increased activated molecules of lymphocyte. While those with poor prognoses presented excluded phenotypes, with few CD8+ T cells restricted to invasive margins and a high density of CD14+CD68+CD11c+ myeloid cells. A good classifier model based on 29 spatial immunophenotypes was established by the random forest algorithm (AUC = 0.975), for identifying patients with Miller-Payne 4 and ypN0 who had favorable prognoses. We also observed similar signatures in patients with Miller-Payne 5 and ypN0. Taken together, spatial immunophenotypes may assess the prognosis in TNBC patients with Miller-Payne 4 and ypN0 after NACT.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3