Abstract
AbstractPredicting and treating recurrence in intermediate-risk prostate cancer patients remains a challenge despite having identified genomic instability [1] and hypoxia [2, 3] as risk factors. This underlies challenges in assigning the functional impact of these risk factors to mechanisms promoting prostate cancer progression. Here we show chronic hypoxia (CH), as observed in prostate tumours [4], leads to the adoption of an androgen-independent state in prostate cancer cells. Specifically, CH results in prostate cancer cells adopting transcriptional and metabolic alterations typical of castration-resistant prostate cancer cells. These changes include the increased expression of transmembrane transporters for the methionine cycle and related pathways leading to increased abundance of metabolites and expression of enzymes related to glycolysis. Targeting of the Glucose Transporter 1 (GLUT1) identified a dependency on glycolysis in androgen-independent cells. Overall, we identified a therapeutically targetable weakness in chronic hypoxia and androgen-independent prostate cancer. These findings may offer additional strategies for treatment development against hypoxic prostate cancer.
Funder
Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Molecular Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献