Feedback activation of EGFR/wild-type RAS signaling axis limits KRASG12D inhibitor efficacy in KRASG12D-mutated colorectal cancer

Author:

Feng JuanjuanORCID,Hu ZhongweiORCID,Xia XintingORCID,Liu Xiaogu,Lian ZhengkeORCID,Wang HuiORCID,Wang LirenORCID,Wang CunORCID,Zhang Xueli,Pang XiufengORCID

Abstract

AbstractColorectal cancer (CRC), which shows a high degree of heterogeneity, is the third most deadly cancer worldwide. Mutational activation of KRASG12D occurs in approximately 10–12% of CRC cases, but the susceptibility of KRASG12D-mutated CRC to the recently discovered KRASG12D inhibitor MRTX1133 has not been fully defined. Here, we report that MRTX1133 treatment caused reversible growth arrest in KRASG12D-mutated CRC cells, accompanied by partial reactivation of RAS effector signaling. Through a drug-anchored synthetic lethality screen, we discovered that epidermal growth factor receptor (EGFR) inhibition was synthetic lethal with MRTX1133. Mechanistically, MRTX1133 treatment downregulated the expression of ERBB receptor feedback inhibitor 1 (ERRFI1), a crucial negative regulator of EGFR, thereby causing EGFR feedback activation. Notably, wild-type isoforms of RAS, including H-RAS and N-RAS, but not oncogenic K-RAS, mediated signaling downstream of activated EGFR, leading to RAS effector signaling rebound and reduced MRTX1133 efficacy. Blockade of activated EGFR with clinically used antibodies or kinase inhibitors suppressed the EGFR/wild-type RAS signaling axis, sensitized MRTX1133 monotherapy, and caused the regression of KRASG12D-mutant CRC organoids and cell line-derived xenografts. Overall, this study uncovers feedback activation of EGFR as a prominent molecular event that restricts KRASG12D inhibitor efficacy and establishes a potential combination therapy consisting of KRASG12D and EGFR inhibitors for patients with KRASG12D-mutated CRC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3