Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IRA axis in malignant mesothelioma

Author:

Scalia Pierluigi,Pandini Giuseppe,Carnevale Vincenzo,Giordano Antonio,Williams Stephen J.

Abstract

AbstractMalignant mesothelioma is a deadly disease with limited therapeutic options. EphB4 is an oncogenic tyrosine kinase receptor expressed in malignant mesothelioma as well as in a variety of cancers. It is involved in tumor microenvironment mediating angiogenesis and invasive cellular effects via both EphrinB2 ligand-dependent and independent mechanisms. The molecular network underlying EphB4 oncogenic effects is still unclear. Here we show that EphB4 expression in malignant mesothelioma cells is markedly decreased upon neutralization of cancer-secreted IGF-II. In particular, we demonstrate that EphB4 protein expression in malignant mesothelioma cells depend upon a degradation rescue mechanism controlled by the autocrine IGF-II-insulin receptor-A specific signaling axis. We show that the regulation of EphB4 expression is linked to a competing post-translational modification of its carboxy-terminal tail via phosphorylation of its tyrosine 987 by the Insulin receptor isoform-A kinase-associated activity in response to the autocrine IGF-II stimuli. Neutralization of this autocrine-induced EphB4-phosphorylation by IGF-II associates with the increased ubiquitination of EphB4 carboxy-terminal tail and with its rapid degradation. We also describe a novel Ubiquitin binding motif in the targeted region as part of the identified EphB4 phosphodegron and provide 3D modeling data supporting a possible model for the acute EphB4 PTM-driven regulation by IGF-II. Altogether, these findings disclose a novel molecular mechanism for the maintenance of EphB4-expression in malignant mesothelioma cells and other IGF-II-secreting cancers (IGF2omas).

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3