Ras protein abundance correlates with Ras isoform mutation patterns in cancer

Author:

Hood Fiona E.,Sahraoui Yasmina M.,Jenkins Rosalind E.,Prior Ian A.ORCID

Abstract

AbstractActivating mutations of Ras genes are often observed in cancer. The protein products of the three Ras genes are almost identical. However, for reasons that remain unclear, KRAS is far more frequently mutated than the other Ras isoforms in cancer and RASopathies. We have quantified HRAS, NRAS, KRAS4A and KRAS4B protein abundance across a large panel of cell lines and healthy tissues. We observe consistent patterns of KRAS > NRAS»HRAS protein expression in cells that correlate with the rank order of Ras mutation frequencies in cancer. Our data provide support for the model of a sweet-spot of Ras dosage mediating isoform-specific contributions to cancer and development. We suggest that in most cases, being the most abundant Ras isoform correlates with occupying the sweet-spot and that HRAS and NRAS expression is usually insufficient to promote oncogenesis when mutated. However, our results challenge the notion that rare codons mechanistically underpin the predominance of KRAS mutant cancers. Finally, direct measurement of mutant versus wildtype KRAS protein abundance revealed a frequent imbalance that may suggest additional non-gene duplication mechanisms for optimizing oncogenic Ras dosage.

Funder

North West Cancer Research Fund

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

Reference44 articles.

1. Prior IA, Hood FE, Hartley JL. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020;80:2969–74.

2. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287–92.

3. Bos JL. ras oncogenes in human cancer: A review. Cancer Res. 1989;49:4682–9.

4. Li S, Balmain A, Counter CM. A model for RAS mutation patterns in cancers: finding the sweet spot. Nat Rev Cancer. 2018;18:767–77.

5. Amin AD, Rajan SS, Groysman MJ, Pongtornpipat P, Schatz JH. Oncogene Overdose: Too Much of a Bad Thing for Oncogene-Addicted Cancer Cells. Biomark Cancer. 2015;7:25–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3