Utilizing epigenetics to study the shared nature of development and biological aging across the lifespan

Author:

Raffington LaurelORCID

Abstract

AbstractRecently, biological aging has been quantified in DNA-methylation samples of older adults and applied as so-called “methylation profile scores” (MPSs) in separate target samples, including samples of children. This nascent research indicates that (1) biological aging can be quantified early in the life course, decades before the onset of aging-related disease, (2) is affected by common environmental predictors of childhood development, and (3) shows overlap with “developmental processes” (e.g., puberty). Because the MPSs were computed using algorithms developed in adults, these studies indicate a molecular link between childhood environments, development, and adult biological aging. Yet, if MPSs can be used to connect development and aging, previous research has only traveled one way, deriving MPSs developed in adults and applying them to samples of children. Researchers have not yet quantified epigenetic measures that reflect the pace of child development, and tested whether resulting MPSs are associated with physical and psychological aging. In this perspective I posit that combining measures of biological aging with new quantifications of child development has the power to address fundamental questions about life span: How are development and experience in childhood related to biological aging in adulthood? And what is aging?

Publisher

Springer Science and Business Media LLC

Reference67 articles.

1. Baldwin, J. Too many thousands gone. in James Baldwin, Notes of a Native Son (Boston: The Beacon Press (The Beacon Press, Boston, 1955).

2. Moffitt, T. E., Belsky, D. W., Danese, A., Poulton, R. & Caspi, A. The longitudinal study of aging in human young adults: knowledge gaps and research agenda. J. Gerontology: Ser. A 72, 210–215 (2017).

3. Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology. The strategy of the genes A discussion of some … (Ruskin House/George Allen and Unwin Ltd, London, 1957).

4. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023).

5. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3